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ABSTRACT 

A fluidic control system was designed, built, and tested for a jet- 

flap airfoil. The system was required to alleviate low frequency pitch- 

ing moments caused by gusts in the airstream. An optimal, maximum effort 

control strategy was used. 

The control system used digital fluidic devices exclusively. Details 

of the control system design procedure are presented. The construction 

of the jet-flap airfoil and a companion gust generator are also discussed, 

Results of wind tunnel testing are tabulated and critiqued. The con- 

trol system was effective in alleviating gusts of frequency less than two 

Hertz. System improvements are maids for operation at higher frequen- 

cies, 
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I. INTRODUCTION 

The overall objective of this project was to design, build, and test 

a fluidically controlled gust alleviator system for a jet-flap airfoil. 

In a jet-flap airfoil a sheet of high momentum air is deflected at an an- 

gle from the trailing edge of the airfoil. This sheet of air can sustain 

a pressure difference across it which deflects the approaching airstream 

resulting in an increase (or decrease for upward deflection) in lift and 

a rearward shift in the center of pressure and aerodynamic center. Two 

effects contribute to the increase in lift. The reaction force due to the 

jet momentum has a component in the lift direction. Also, the circulation 

increases due to downward deflection of the flap which results in in- 

creased lift (the converse is true for upward deflection). A thorough 

discussion of jet-flap theory is contained in Ref. 1. 

Since air is the working fluid of the jet-flap, fluidic control de- 

vices, powered by air, were a logical choice for the control systen,. 

Fluidic devices can perform many logic and control functions and are 

readily interfaced with electric, hydraulic or pneumatic systems. Given 

a supply of clean dry air fluidic devices are highly reliable. They are 

insensitive to environmental factors such as vibration, electromagnetic 

radiation, and temperature. 

The jet-flap is capable of performing any of the functions of the more 

familiar mechanical flap. Phillips and Kraft [2] showed that flaps can 

satisfactorily alleviate vertical accelerations camsed by a gust field 

provided that the flaps are properly designed to awoid severe pitching 

moments, The control system which was designed for this project uses the 

10 
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jet-flap to alleviate pitching motion in a single-degree-of-freedom airfoil 

model. 

11 





II. BACKGROUND 

The applicability of fluidic devices to control systems was first 

proposed in 1959 when the Diamond Ordnance Fuze Laboratories (now Harry 

Diamond Laboratories) introduced fluidics technology. The first symposia 

on fluidics were held by the Diamond Ordnance Fuge Laboratories and the 

American Society of Mechanical Engineers in October and November 1962 re- 

spectively. Thus fluidics is a relatively new technology. The synthesis 

and analysis of fluidic control systems are not, at this time, formalized 

procedures. 

Analogies between fluidic and electric systems are used throughout 

the literature both for *teeteeien of principles and for analysis. 

Terms such as fluid capacitance, inductance and resistance occur fre- 

quently in systems literature. These terms must be carefully considered 

because there are no universally accepted standard definitions, Equiva- 

lent circuits and transfer functions have been derived for many fluidic 

components. These modeling techniques are quite complex and require a 

solid grasp of electron tube and solid state device theory from which the 

techniques are derived. Belsterling [3] summarizes the available tech- 

niques as: 

a) Non-Linear and Linear Mathematical 

b) Graphical 

c) Linear modeling 

A combination of the graphical and non-linear mathematical methods 

plus breadboard testing were used in the development of the jet-flap con- 

trol systen,. 

4 
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Fluidic devices can be classified into the following general groups: 

a) proportional (analog) components 

b) digital components 

c) sensors 

d) interfaces (fluidic-pneumatic, fluidic—electronic etc.) 

e) special components 

These components can be combined to form digital, analog or hybrid 

systems. The jet-flap design used in this project was essentially a dig- 

ital device in that the jet deflection was either zero or plus or minus a 

fixed angle. The jet arrangement is shown in Figure 1. Three tubes span 

the trailing edge of the wing. The center tube, called the power tube, 

blows a continuous stream of air. When air blows from the upper control 

jet the combined streams form the jet-flap deflected downward at an angle 

6. A similar upward deflection occurs when the lower jet is on. When 

the control pressure is sufficiently high the combimed jet attaches to 

the opposite jet tube due to the Coanda effect. Further increases in 

control pressure do not increase the jet deflectiom significantly. This 

saturation effect suggested using the jet-flap as @ “maximum effort" or 

"bang-bang" type of control. And so it was decided to fix the power and 

control jet pressures thus fixing the jet deflectiom angles. This in 

turn suggested the use of digital rather than proportional fluidic devices. 

13 
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CONTROL JETS 

POWER JET 

JET-FLAP 
JET-FLAP (DEFLECTED BY UPPER 

CONTROL JET) \ 

JET-FLAP AIRFOIL TRAILING EDGE DETAIL 

FIGURE 1 

JET-FLAP GEOMETRY 

CONTROL FORCE 

POSITION ERROR 

| 

FIGURE 2 

RELAY SERVO CHARACTERISTIC 
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III. CONTROL SYSTEM THEORY 

The gust alleviation scheme chosen consisted of pitching the airfoil 

to maintain a constant attitude during passage through a gust field. This 

method was dictated by the physical arrangement of the airfoil built for 

the project. Rose and Smith [4] reported limited success in the design 

and test of a fluidic control system which maintains constant lift force 

in a gust field. The merits of these (and other) gust alleviation schemes 

‘are discussed in Ref. 2. 

A. SYSTEM DESIGN PARAMETERS 

The system output was defined as the airfoil absolute attitude angle 

(4). Since this was to be maintained at a prescribed value the control 

system is defined as a regulator. The control mechanism is the jet-flap 

and the load is the airfoil itself. In order to design the control sys- 

tem a control strategy had to be developed. As prewiously stated, the 

maximum-effort control was suggested by the existing design of the jet- 

flap. A maximum-effort controller, sensing position error only, has a 

characteristic as shown in Figure 2. The dead space may be designed into 

the controller or may be the result of insensitivity of the position 

sensor to small errors. The control force is the pitching moment caused 

by the deflection of the jet-flap. 

A control system with a characteristic as shown in Figure 2 (called 

a relay servo) has the advantages of minimum rise time, simplicity, and 

economy. A simple relay servo however, is normally unstable or has a 

limit cycle of unacceptable amplitude. Some means of compensation is 

needed to reduce the amplitude of the limit cycle and stabilize the system, 

15 
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The frequency range of the gust disturbances to be controlled was 

chosen as zero to four Hz. Phillips and Kraft [2] reported that low fre- 

quency, high amplitude, vertical accelerations were a major cause of pas- 

senger discomfort. They reported some data to verify this contention. 
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IV. CONTROL SYSTEM DESIGN 

A. CONTROLLABILITY 

The first question to be answered in the overall design was: "Is the 

wing controllable using the selected control strategy". To answer this 

question the wing dynamics had to be modeled in a manner which was repre- 

sentative of the actual wing and was also mathematically tractable. The 

wing was mounted on oversize ball bearings to reduce static and rolling 

friction. Furthermore, it was found that viscous damping was very low. 

Since damping would have a stabilizing effect on a relay control system, 

the assumption of no damping corresponds to the worst possible case. 

With the assumption of no friction or damping the equation of motion for 

the wing is, 

where the coordinate origin is the axis of rotation. 

A free body diagram of the wing is shown in Figure 3. Under steady- 

state conditions the moment due to the lift force is balanced by that of 

the weight. The aerodynamic moment is zero since the airfoil is symmet- 

ric and the jet reaction has no moment since the deflection 6 is zero, 

In a dynamic situation the summation of moments is an extremely complex 

expression. 

ZM,=J,é = Ld. cosa+Dd&, sina - Wg cosa +M. — Tj sind 

In this expression the lift and drag forces are functions of « and 6. 

Furthermore, a and a are functions of 6. None of these functions can 

‘be expressed in closed forn. 

From a control theory standpoint, the system input, output and con- 

trol forces and excitation force must be defined. The output has previously 

17 
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been defined as &, the attitude angle with respect to a fixed coordinate 

system. The control forces (moments) are the aerodymamic moment ae » the 

moment of the jet force reaction Tj sin6 and the moment of the lift in- 

crement due to the flap deflection. The excitation is the moment due to 

the increments in lift and drag which are caused by the gust field. The 

input is the desired attitude, Oe 

The lift increment may be expressed as: 

AL= d9L a+ dL f$ = al, + AL. 
Ox ad 

Where Ob a=ac; , is the change in lift force due to 
aa 

the gust field and ol = Bhes is the lift increment due to 
36 

the deflection of the jet-flap. 

The steady state lift moment on the wing is idemtically equal to the 

moment of the weight. In order to gain some physical insight into the 

control problem the following assumptions are made: 

a) L dic cosa = (L, taL, taL,) din cosa where Lo is the steady 

state lift at « = 

b) L, d,, cos% = We cosa , under dynamic conditions. 

ec) D a sin« is small in comparison with the other moments 

since, Di ics) Os te 

Sin qa < cosa 

d) Tis a constant force 

With these assumptions the equation reduces to: 

ZMz> JoX = ALi dy, cosa + Al, dy, Cosa + Mar -Tj sind 

The last three terms in this expression are the control forces. They all 

act in the same direction depending on the jet deflection 6. If 6 is 

positive Mai is negative and A L, is negative because dL is negative, 
PY) 

Since 6 is fixed in absolute value by the geometry of the jet-flap, ALys 

19 
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MM. . and sin 6are discreet values. Furthermore, they are all equal to zero 

when the jet-flap is not deflected. The total control force, 

uU= AL. d, cosa +My. - Tj sin 5 

very nearly approximates a relay control. The moment arm of the lift in- 

crement, qs. cos & , varies continuously with « , the dependent variable. 

If the wing pitches upward, this moment arm decreases and vice versa. 

Since the wing is symmetric he must be positive to produce lift. This 

means that the term a cos « is not symmetric about the steady state 

or zero error position. The moment arm is greater if the wing pitches 

down from this position than it is if it pitches upward an equal amount. 

Assuming that the total control force is asymmetric but neglecting 

the cosine variation in the term dag cos < , the characteristic of the 

total control force is as shown in Figure 4, 

To demonstrate controllability only the total control forces and the 

system dynamics are considered. By definition the system is controllable 

if it is possible to transfer it between specified states in some inter- 

valo<t< tp with the control force u. The states for this system are: 

X= K- ay 

Without excitation the equation of motion is, 

be eae 

and the state equations are: 

x= x, 
“la Mg 27 pees Uh 

Jo 

where, y= +a ; K > Oo 

oa = KO 

“u= 0 K,= 0 
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CONTROL FORCE (u) 

POSITION ERROR 

FIGURE 4 

TOTAL CONTROL FORCE 

CHARACTERISTIC 

21 



(w) aoa07 

ee a ee “y , 

6 THOTT 

A807 \LORTUOO JATOT : 

ITS IH TOARAHS 



Elgerd [5] proves the controllability of precisely this system of 

equations using discreet values for the control force and one switching 

during the control interval. He further shows that there are an infinite 

number of possible control strategies of this type which will bring the 

system to a specified state in as short a time interval as is desired 

provided the control forces are unbounded. Practically, there are bounds 

on the control forces and on the attainable states. But, if the time 

interval is sufficiently long and the control forces strong enough the 

system can be controlled. 

B. FLUIDIC CONTROL SYSTEM DESIGN 

The fluidic control system was required to perform the following 

functions: 

1) sense the wing position 

2) turn on the jet-flap (control force) 

3) switch the jet-flap at the proper time 

1. Sensing 

The simplest available position sensor was the interruptible-jet 

sensor. This device consists of a jet of air which blows across a gap 

into a receiving port. The output is the pressure from the receiving 

port. When an object interrupts the jet the output is off. 

The primary concern for all components in the system was that of 

time delay. Rapid switching of the control jets would insure good re- 

sponse of the wing. Since no data was available from the manufacturer, 

the jet sensors were tested upon receipt. The time delay between the 

removal of an object from the sensor and the realization of full pressure 

at the output was found to be 15 milliseconds, Although undesirable this 

delay was deemed tolerable. Additionally, every effort was made to reduce 
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line lengths between these sensors and the following components in the 

system. 

2. Interfacing 

To turn on the control jets an interface device was required which 

could be activated by the low output pressures of a fluidic device and 

could provide sufficient flow to the jets. A pair of fluidic-pneumatic 

interface valves of an early design were available. The flow capacity 

of these valves was found to be adequate. A test stand, shown schemat- 

ically in Figure 5, was built to determine the frequency response and 

rise time of these valves. This same test setup was used to measure the 

time delay in the interruptible-jet sensors. 

In this test setup a blade was rotated by a D.C. motor through a 

reduction gear. The speed range could be varied between 0.1 and 20 rev- 

olutions per second. The passage of the blade produced a pulse in the 

proximity sensor; the period between pulses was measured on a digital 

electronic counter-timer. The pressure pulses from the interruptible- 

jet sensor and from the valve were displayed simultaneously on a two- 

channel chart recorder. The fluidic amplifier consisted of a NOT element 

and two digital amplifier stages. The NOT element sent a pressure pulse 

to the valve through the amplifiers when the blade passed through the 

jet sensor. This pulse turned on the interface valve. From the output 

of the chart recorder the time lag between the cutoff of the jet sensor 

and the opening of the valve could be measured. Also the magnitude of 

the pulses and their shape were determined. The frequency response of 

the valves was plotted from the charts. The ratio of output to input 

‘pressure, in dB, was plotted against the log of frequency. The original 

valves had a frequency response of less than 0.5 Hz. which was unsatis- 

factory. Corning Fluidamp valves were ordered and similarly tested, A 
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frequency response of better than 7.0 Hz was measured; the pressure ratio 

was -3 dB at 7.0 Hz. The rise time of these valves was approximately 20 

milliseconds as was the drop time. It was also found that the valves 

operated satisfactorily at input pressures corresponding to the output 

pressure of a fluidic logic device. Thus digital amplifiers were not 

needed in the system. Based on these results the Corning valves were 

selected for use. 

3. Fluidic Logic Circuit 

In describing an optimum relay servo Thaler and Pastel [6] state: 

"Full motor torque must be used to accelerate the output, but in order 
to prevent overshoot, full motor torque must also be used to decelerate 
the output; thus a derivative signal of some type must be used to re- 

verse the relay before the error reaches zero. For a second-order sys- 
tem, if this point of reversal is properly selected, the system is de- 

celerated so that zero error and zero error rate are reached simultaneously 

in which case the relay remains in the neutral position and the system 
is stationary at zero error." 

This statement summarizes what the fluidic logic was designed to 

do. It had to apply full pressure to the control jet to accelerate the 

Wing toward the neutral position and switch at the proper time to decel- 

erate the wing to rest. In a sinusoidally varying gust field the system 

had to repeat this process with each reversal of the gust direction. The 

turn-on and switching points were determined by the output of two sets of 

interruptible-jet sensors activated by vanes attached to the wing. These 

vanes and sensors are shown in Figure 6, the overall system schematic. 

The fluidic symbols along with their logic tables are given in Figure 7, 

The first sensor Ji turns on when the wing moves off the neutral position 

(which was set by aligning the vane to the wing) and the vane uncovers the 

jet. The sensor output is led to the control port of an INHIBITED OR 

component, IOR 1, which turns on the interface valve. This component was 

chosen to control the interface valve because it has an override control 
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FIGURE 6 

CONTROL SYSTEM SCHEMATIC 
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port which, when activated, will switch the output and shut off the valve. 

IOR 1 also sets the 1 output of flip-flop Fl. The flip-flops are the men- 

ory components of the system which activate the switching of the interface 

valves. As the vane continues to rotate it interrupts the second jet sen- 

sor. The output of this sensor turns off. This loss of signal activates 

the logical NOT component, NOT 1. The output of NOT 1 sets output 1 of 

another flip-flop, F2. This is the instant when switching occurs. Both 

Fi and F2 are in state 1; since these states are connected to the control 

ports of the AND component, Al, it turns on. The signal from Ai turns 

off the interface valve through the override port of its INHIBITED OR and 

turns on the interface valve on the opposite side by activating the IN- 

HIBITED OR of that valve. Assuming now that the wing has returned to the 

neutral position, the vane cuts off sensor Ji. This turns on NOT 2 which 

resets the flip-flops to state 2. This turns AND, Al, off and hence the 

opposite interface valve shuts off. 

The design of the system, then, consisted of choosing the logic 

components to perform a predetermined sequence of events. The logic con- 

ponents were all manufactured by the Corning Glass Works and were de- 

signed for ease of matching. Fan out, the number of components driven 

by an output, was the only matching parameter requiring consideration in 

the logic circuit, 

The jet sensors, purchased from another manufacturer, (Bowles 

Fluidics) had to be matched to the inputs of the logic components, This 

required breadboard testing of the circuit. The procedure was to set the 

supply pressure to the sensors, and to vary the supply pressure to the 

associated OR/NOR components until the sensors could satisfactorily switch 

them. Then using the performance curves in Ref, 7 the supply pressures 

were sequentially set throughout the logic circuit. A panel mounted 
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manifold of pressure regulators was an indispensible tool used for this 

sequence, Sufficient regulators were available to independently vary each 

supply pressure. The final system pressure balance, which gave the most 

reliable performance is tabulated below, 

‘TABLE 1 

SYSTEM PRESSURE BALANCE (psig) 

SUPPLY OUTPUT CONTROL 
COMPONENT FANOUT PRESS. (Pq) PRESS, PRESS. (P,) P,/Py 

Ji 2 10.0 1.0 - - 
J2 1 10.0 1.0 a a 

IOR 4 1 5.0 1.0 1.0 0.2 
NOT 1 | 5.0 1.0 1.0 0.2 
NOT 2 2 5.0 0.8 1.0 0.2 
Fi 1 Ved 1.5 0.8 0.106 

F2 1 765 1.5 0.8 0.106 
Ai 23 (eS 12 1.5 0.2 

The critical parameter is the ratio of control to supply pressure. For 

positive switching this ratio must be greater than 0.1. Thus the flip- 

flops Fi and F2 were the most sensitive to supply pressure changes. The 

fanout of AND, Al, is 24 because of the high input impedance of the over- 

ride control of IOR 1, For design purposes this control port is consider- 

ed as a fanout of 14. 

4, System Operation % 

The system operation is summarized in the following sequence, 

When the wing pitches upward sensor J1 turns on the upper control 

jet through IOR 1 and sets the 1 output of Fl, The jet-flap is deflected 

downward tending to pitch the wing downward. As the wing nears its maxi- 

mum upward deflection sensor J2 sets the output of F2 to the 1 port through 

NOT 1. As both flip-flops are in the 1 state Al turns on, This shuts off 

the upper control jet, through IOR 1, and turns on the lower control jet 

through IOR1 of that side of the control system. This deflects the jet- 
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flap upward to decelerate the wing to the neutral position. When the 

wing reaches the neutral position sensor J1 turns off so that NOT 2 re- 

sets the flip-flops, Fi and F2, and the lower jet is turned off by Al. 

A similar sequence occurs when the wing pitches downward. 
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V. WING DESIGN 

As previously noted, a jet-flap airfoil was available but was being 

used concurrently. Also, for scheduling reasons, it was necessary to use 

the Mechanical Engineering Department's wind tunnel. The existing air- 

foil would have required extensive modification to mount it in this tunnel. 

It was decided to build a similar airfoil with a different mounting ar- 

rangement. 

A. DESIGN CONSTRAINTS 

The primary constraint which affected the design was the availability 

of sufficient air to operate the jet-flap. Jet flap effectiveness in- 

creases directly with the jet momentum coefficient GC. which is the ratio 

of the jet reaction to the free stream momentum [8]. The momentum co- 

efficient per unit span is defined as: 

Cy = ™j Vj 

1 2 
i A 

To obtain a high momentum coefficient the mass flow rate must be large. 

Because of limited air compressor capacity the span of the wing had to 

be approximately one foot. 

The second major constraint was the wind tunnel arrangement. The test 

section is 20 inches wide by 30 inches high. Access to the test section 

is through Plexiglas doors which are hinged at the top. The mounting 

platforms for test shapes are outside the wind tunnel on either side, 

The wing was built on an axle which extended through the doors of the 

tunnel, In order to place the wing in the tunnel one axle was pushed 

through until the wing was against the far wall, the door was closed and 
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the wing was pushed back to extend the other axle out the door to the 

mounting platform. A 12-inch wingspan with an 8-inch axle on each side 

would just fit in the tunnel, 

Fitting the power and control jets into the tail of the wing meant 

that either a blunt wing or long wing be made. It was determined that 

the jets could be fitted into a NACA 0012 airfoil with a nominal 15-inch 

chord cut off at an 80 percent (12-inch) chord length. The jets were 

installed at the 80 percent chord giving the wing a thickness ratio of 

0.147. 

B. DESCRIPTION OF THE WING 

The wing was a NACA 0012 airfoil with the jet-flap installed at the 

80 percent chord. The cross section plan for this wing was taken di- 

rectly from Ref. 9. The leading edge, back to the 13.5 percent chord 

was milled from aluminum bar and hand shaped to the final contour. The 

inside of this bar was milled out to reduce its weight. Four ribs were 

cut and hand finished to form the remainder of the wing contour. The ribs 

were dovetailed into the leading edge and spaced by two frames each, top 

and bottom. The axle, 3/4-inch aluminum pipe, passed through the ribs 

at the 18.3 percent chord, forward of the aerodynamic center, This pipe 

was split inside the wing to pass the air tubing to the jets. The power 

jet, located at the 80 percent chord, was rigidly fastened to the ribs. 

The control jets were fitted in slots in the outer ribs so that the spacing 

between them could be varied (see Figure 8). All of the jets had 44, .030 

inch, holes at 1/4-inch intervals drilled for air flow. The power jet was 

fed by 1/4-inch I.D. plastic tubing passing through one side of the axle. 

The control jets were supplied by .180 I1.D. polyethylene tubing passing 

through the opposite side of the axle. The ribs were covered with .020 

inch aluminum sheet held in place by contact cement. Most of the 
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construction was held together by epoxy cement with only the fittings to 

the jet tubes being brazed. The aluminum sheet was faired into the lead- 

ing edge with DEVCON. The wing was given two coats of paint and one of 

varnish to give a smooth surface. The axles were machined to 1.000 inch 

diameter to fit the mounting bearings at the wind tunnel. 

The mechanical properties of the wing are listed in Table 2. 

TABLE 2 

MECHANICAL PROPERTIES OF WING 

Weight 5.42 lbs. 
Location of center of gravity 1.26 inches aft of axle 

(.275 chord) 
Moment of Inertia about C.G. = .0051 slug-in 

about axle = .2734 slug-in 
Length 12 in. 
Width 5 12 in. 
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VI. THE GUST GENERATOR 

The purpose of the gust generator was to create a sinusoidally varying 

vertical component of velocity in the free stream. The existing gust gen- 

erator used a stationary airfoil with an oscillating jet-flap to produce 

the gust field. Due to the critical supply of air available an attempt 

was made to build a mechanical gust generator. The disturbances were to 

be generated by oscillating plates driven through a scotch-yoke mechanism 

by a D.C. motor. This attempt was unsuccessful primarily because the 

plates had to be mounted too far forward of the test section. 

The oscillating jet-flap was modified to fit the wind tunnel. This 

device was also unsuccessful in creating enough of a disturbance to ex- 

cite the wing. Previously, this style of generator had been successful 

used in conjunction with a lighter wing in a lower speed wind tunnel with 

a much larger test section area. This wing had also been restrained by 

a spring which prevented it from moving out of the gust field. 

No further attempts were made to generate a controlled gust field due 

to an unexpected advance in the project completion date. However, it was 

possible to make the wing oscillate rather violently by setting the wind 

tunnel speed so that the frequency of vortex shedding coincided with the 

natural frequency of pitch oscillation of the wing. By means of a coun- 

terweight the center of gravity of the wing could be moved relative to 

the axle. This varied the natural frequency of the wing and hence the 

frequency at which the oscillations occurred. The vortex shedding phe- 

nomena made it possible to evaluate the effectiveness of the control system. 
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VII. TEST EQUIPMENT AND PROCEDURE 

A. MOUNTING ARRANGEMENT 

As much as possible, the mounting hardware from a previous wind tunnel 

project was used. Platforms stood on either side of the test section and 

were fixed to each other by braces running under the test section. Bearing 

pedestals were made for oversize ball bearings in which the wing axle ro- 

tated (see Figure 9). These bearings were cleaned of all grease and 

sprayed with a light lubricant to minimize friction. The axle of the wing 

fitted through holes in the wind tunnel doors into the bearings. On one 

“side of the tunnel the counterweight was clamped to the axle between the 

door and the bearing pedestal. The counterweight was sized so that the 

center of gravity of weight and wing could be moved as far forward as the 

axis of rotation. Between the other door and bearing analuminum pulley 

wheel was fitted to the axle. This pulley had two grooves machined in 

it for o-rings. The o-rings were used to drive a potentiometer and a ta- 

chometer generator which were similarly fitted with pulleys. The posi- 

tion vanes were mounted on the axle, outboard of the bearing. The angle 

between the centerline of the vanes and the wing chord was set by rota- 

ting the vanes then fixing them with a setscrew. The control system, 

mounted on an aluminum plate was clamped to the platform so that the vanes 

were aligned with the interruptible jet sensors. The fully assembled sys- 

tem is shown in Figure 10. 

B. AIR SUPPLY 

Two compressors were used, the house air compressor supplied the power 

jet directly and the control jets intermittantly through the interface 
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valves. A regulator maintained the supply to the jets at 55 psig but due 

to line losses and valve losses the control jet pressure was 22 psig with 

the valves wide open. A portable compressor supplied air to the fluidic 

sensors and control devices through a manifold of regulators. These reg- 

ulators maintained the supply pressures to the sensors and logic compo- 

nents. The use of fluidic resistors to maintain system pressures was 

successfully tried but the regulator manifold allowed more flexibility 

for test purposes. The capacity of the portable compressor, 7 scfm, was 

more than sufficient to run the control system but insufficient for ei- 

ther the wing jets or the gust generator. 

C. INSTRUMENTATION 

Wind tunnel speed was measured using a pitot tube mounted upstream 

of the airfoil through the floor of the test section. 

The potentiometer and tachometer generator, previously mentioned, 

were used to measure the angular displacement and velocity of the wing. 

Their outputs were recorded simultaneously on two channels of a chart 

recorder, 

Pressure transducers were inserted in the output lines of the inter- 

face valves. These outputs were also displayed on the chart recorder, 

The chart then, gave a time history of velocity, displacement and control 

jet pressures. From these charts the switching sequence could be moni- 

tored by comparing the pressure and displacement traces. Phase plane 

plots were made from the velocity and displacement data. The shape, am- 

plitude and frequency of all signals were conveniently displayed. 

D. TEST PROCEDURE 

Prior to each test run the pressure transducers and the potentiometer 

were calibrated. To calibrate the pressure transducers the range of the 
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amplifiers was set by adjusting the zero and then trimming the gain using 

a built-in calibration voltage. The range of amplifier output, zero to 

one volt D.C., corresponded to 0 to 100 psig at the transducers. The 

chart recorder zero and full scale deflections were adjusted to a conve- 

nient scale using the calibration signals from the transducer amplifiers. 

This scale was etindeh as one chart line per one psig. 

The chart recorder was used to calibrate the potentiometer. The wing 

was held in the horizontal position and the chart recorder was set to 

zero deflection. The wing was then held in the vertical position and the 

voltage to the potentiometer was adjusted to give a full scale reading on 

the recorder. The most convenient scale was found to be 4.0 volts per 

m/2 radians. 

The calibration of the tachometer generator had previously been de- 

termined to be 0.06 volts per radian per second. Only the zero adjustment 

had to be checked on this channel of the recorder. 

To make a test run the counterweight was adjusted to vary the natural 

frequency of the wing. Moving the weight forward of the axle lowered the 

frequency and moving it aft had the opposite effect. The wind tunnel was 

then started and its speed adjusted to produce oscillation of the wing. 

The manometer reading from the pitot tube was recorded when the wind tun- 

nel speed reached steady state. The chart recorder was started and then 

the control system was turned on. When the control system had damped out 

the oscillations the recorder and control system were shut down, This 

procedure was repeated for several tunnel speeds with the counterweight 

in different positions so that the effectiveness of the controls could be 

observed at varying frequencies of oscillation, 
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VIII, RESULTS 

The system consistently was able to eliminate oscillations of frequency 

up to two Hz. and of amplitude up to 0.2 radians. On the average these 

oscillations were eliminated 2.2 seconds after the control system was ac- 

tivated. At frequencies above two Hz., the system behaviour was erratic. 

Amplitude of oscillation was reduced from 21 to 88 percent at these fre- 

quencies. The results are summarized in Table 3. 

At the higher frequencies the amplitude of oscillation was greater, 

Frequency and amplitude could not be controlled independently during the 

tests. The amplitude was determined by wind speed, wing dynamics and a 

jump resonance phenomena. The ret two entries in the table are an ex- 

ample of this phenomena. The natural frequency of the wing is nearly 

equal for these runs. The wind tunnel speeds and oscillation amplitudes, 

however, differ significantly. The lower amplitude occurred when wind 

tunnel speed was decreased from above the resonant condition and vice 

versa. 

A typical time history of position and velocity, as plotted on the 

chart recorder, is shown in Figure 11. The corresponding phase plane 

plot is given in Figure 12. The spikes on the velocity trace are due to 

the stretching of the rubber as the tension in the o-ring, driving the 

tachometer, reversed direction. Since the inertia of the potentiometer 

was very low, the tension in its o-ring could be kept low without any 

slipping. This resulted in the smoother trace of the position, which 

was practically sinusoidal. 

The phase plane plot is not symmetric about the origin. This illus- 

trates two problems of the system. The switching of the control jets was 

4A 
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not symmetric and the magnitudes of the upward and downward control forces 

were not equal. The asymmetry or improper timing of the system was the 

major cause of poor performance at higher oscillation amplitudes. 





IX. CONCLUSION 

A. CRITIQUE 

1. The Control System 

The control forces were shown to be capable of damping out 

oscillations of significant amplitude. The selected control strategy 

proved to be adequate, justifying the assumed discreet magnitudes of the 

control forces. 

The major faults of the system lie in the mechanical design of 

what may be called the operator's controls. The setting of the vane po- 

sition by hand using a setscrew was crude. This caused the system to 

frequently go into a limit eyelie. dne to the error between the steady- 

state angle of attack and the vane setting. The other manual input, 

which could be called the amplitude control, sets the gap between the jet 

sensors J2. This gap determined the switching point of the system. With 

the current arrangement, the operator would increase this setting for 

high amplitude gusts or decrease it for mild gusts. This was accomplished 

by adjusting four nuts on a threaded post which supported the sensors. 

Furthermore, both of the above settings were estimated by eye. It was a 

trial and error procedure to cause the system to switch at the proper 

amplitudes of upward and downward deflection, 

2. Wing Design 

The wing span was limited by the availability of air and by the 

mounting arrangement in the tunnel. As a result the aspect ratio of the 

wing was less than one. With a larger aspect ratio wing which spanned 

the tunnel the lift, drag, and aerodynamic moment could have been esti- 

mated from the experimental data in Ref. 8, 9, and 10. 
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With a different jet-flap design the wing could also have had a 

shorter chord length. This would reduce the weight per unit span, im- 

prove the aspect ratio and reduce the moment of inertia. A wing with 

this improved geometry would then be easier to excite with the gust gen- 

erator, 

B. RECOMMENDATIONS 

1. Control System 

The vane and jet sensor arrangement could be improved by fixing 

the vane to the wing and by building a rotating fixture for the jet sen- 

sors. The sensors would then be aligned to the vane thus setting the an- 

gle of attack. 

For a truly optimal control system the switching locus of the 

control jets should be computed by the control system rather than set by 

the operator. ‘This would eliminate the adjustment problem with the spac- 

ing of sensors J2. To do this requires the design of a timing circuit if 

the system is to remain purely digital. If a satisfactory vortex rate 

sensor were available it could be used to input velocity data to a hy- 

brid computer network of proportional and digital fluidic devices. 

In order to take advantage of the reliability of fluidic devices, 

it was intended throughout this project to avoid electrical or electronic 

components. By allowing their use, a designer would have more flexibil- 

ity. A hybrid system with electronic sensors and fluidic logic might 

provide the optimum combination of sensitivity, response and reliability. 

In this project as in Rose and Smith's [4] the system performance was 

degraded by the sensors, At present the interface devices to convert e- 

lectronic signals to fluidic signals are not available. Miniaturized 

solenoid valves would have to be fabricated for such an application. 
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2. Wing Design 

The aspect ratio of the wing should be increased to at least two. 

Additional air compressor capacity must be acquired to supply a full-span 

jet-flap. 

To increase the jet deflection angle, it is recommended that the 

gap between the control jets and the power jet be closed. This could be 

accomplished by filling the space between the tubes with DEVCON and fair- 

ing the filler material to the contour of the tubes. This would provide 

a continuous solid boundary to which the jet could attach. 

3. Wind Tunnel and Model Mounting 

When the wind tunnel is operating the smalI pressure difference 

across the large tunnel doors creates a considerable net force on the 

doors. Deflections of nearly onestEae inch have been observed at the 

center of the doors. The plexiglas should be reimforced or preferably 

the doors should be replaced by smaller ones, 

The present mounting stands must be completely disassembled in 

order to open the wind tunnel door. With this arramgement it takes at 

least an hour to install the wing. Most of this time is spent in align- 

ing the mounting pedestals. It is suggested that a concrete block, with 

steel channels imbedded in the top, be built up to tthe base of the test 

section. Any type of mounting fixture could then be bolted to the steel 

and arranged for easy assembly and disassembly. 

C. SYSTEM SCALE 

The control system was designed and built for a wing model to be test- 

ed in a wind tunnel. The question arises, "Can this system be adapted to 

an actual aircraft?" The answer is necessarily comditional; a yes answer 

can only be given after the fact. The requirements which must be satis- 

fied include: 
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a) a fixed frame of reference (stable element), 

b) ducting for air from engine to flap, 

c) an interface device capable of handling the air volume necessary 

for an effective flap (not a valve), 

d) a supply of clean dry air for the fluidics. 

For complete gust alleviation the system must also maintain constant 

lift in the gust field in order to eliminate purely vertical accelera- 

tions. This means there must be jet-flaps on the wings and tail to con- 

trol lift and pitch simultaneously. The jet-flap may also be used as a 

lift augmentation device, particularly in V/STOL applications. A manual 

control of jet deflection would be necessary for this purpose. 

Development of jet-flapped v/STOL aircraft is just now getting under- 

way. Fluidic devices may find Samar in the control systems for 

these aircraft. 
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20. (cont'd) 

Results of wind tunnel testing are tabulated and critiqued. The control 
system was effective in alleviating gusts of frequency less than two Hertz. 
System improvements are required for operation at higher frequencies. 
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